强化学习(RL)技术在许多具有挑战性的任务中引起了极大的关注,但是当应用于现实世界问题时,它们的性能急剧恶化。已经提出了各种方法,例如域随机化,以通过不同的环境设置下的培训代理来应对这种情况,因此在部署过程中可以将它们推广到不同的环境。但是,它们通常不包含与代理人正确相互作用的潜在环境因素信息,因此在面对周围环境变化时可能会过于保守。在本文中,我们首先将适应RL中的环境动态的任务形式化为使用上下文Markov决策过程(CMDP)的概括问题。然后,我们在上下文RL(AACC)中提出了不对称的参与者 - 作为处理此类概括任务的端到端参与者的方法。我们在一系列模拟环境中证明了AACC对现有基线的性能的基本改进。
translated by 谷歌翻译
Rankings are widely collected in various real-life scenarios, leading to the leakage of personal information such as users' preferences on videos or news. To protect rankings, existing works mainly develop privacy protection on a single ranking within a set of ranking or pairwise comparisons of a ranking under the $\epsilon$-differential privacy. This paper proposes a novel notion called $\epsilon$-ranking differential privacy for protecting ranks. We establish the connection between the Mallows model (Mallows, 1957) and the proposed $\epsilon$-ranking differential privacy. This allows us to develop a multistage ranking algorithm to generate synthetic rankings while satisfying the developed $\epsilon$-ranking differential privacy. Theoretical results regarding the utility of synthetic rankings in the downstream tasks, including the inference attack and the personalized ranking tasks, are established. For the inference attack, we quantify how $\epsilon$ affects the estimation of the true ranking based on synthetic rankings. For the personalized ranking task, we consider varying privacy preferences among users and quantify how their privacy preferences affect the consistency in estimating the optimal ranking function. Extensive numerical experiments are carried out to verify the theoretical results and demonstrate the effectiveness of the proposed synthetic ranking algorithm.
translated by 谷歌翻译
Deep learning has been widely used for protein engineering. However, it is limited by the lack of sufficient experimental data to train an accurate model for predicting the functional fitness of high-order mutants. Here, we develop SESNet, a supervised deep-learning model to predict the fitness for protein mutants by leveraging both sequence and structure information, and exploiting attention mechanism. Our model integrates local evolutionary context from homologous sequences, the global evolutionary context encoding rich semantic from the universal protein sequence space and the structure information accounting for the microenvironment around each residue in a protein. We show that SESNet outperforms state-of-the-art models for predicting the sequence-function relationship on 26 deep mutational scanning datasets. More importantly, we propose a data augmentation strategy by leveraging the data from unsupervised models to pre-train our model. After that, our model can achieve strikingly high accuracy in prediction of the fitness of protein mutants, especially for the higher order variants (> 4 mutation sites), when finetuned by using only a small number of experimental mutation data (<50). The strategy proposed is of great practical value as the required experimental effort, i.e., producing a few tens of experimental mutation data on a given protein, is generally affordable by an ordinary biochemical group and can be applied on almost any protein.
translated by 谷歌翻译
Background and objective: COVID-19 and its variants have caused significant disruptions in over 200 countries and regions worldwide, affecting the health and lives of billions of people. Detecting COVID-19 from chest X-Ray (CXR) images has become one of the fastest and easiest methods for detecting COVID-19 since the common occurrence of radiological pneumonia findings in COVID-19 patients. We present a novel high-accuracy COVID-19 detection method that uses CXR images. Methods: Our method consists of two phases. One is self-supervised learning-based pertaining; the other is batch knowledge ensembling-based fine-tuning. Self-supervised learning-based pretraining can learn distinguished representations from CXR images without manually annotated labels. On the other hand, batch knowledge ensembling-based fine-tuning can utilize category knowledge of images in a batch according to their visual feature similarities to improve detection performance. Unlike our previous implementation, we introduce batch knowledge ensembling into the fine-tuning phase, reducing the memory used in self-supervised learning and improving COVID-19 detection accuracy. Results: On two public COVID-19 CXR datasets, namely, a large dataset and an unbalanced dataset, our method exhibited promising COVID-19 detection performance. Our method maintains high detection accuracy even when annotated CXR training images are reduced significantly (e.g., using only 10% of the original dataset). In addition, our method is insensitive to changes in hyperparameters. Conclusions: The proposed method outperforms other state-of-the-art COVID-19 detection methods in different settings. Our method can reduce the workloads of healthcare providers and radiologists.
translated by 谷歌翻译
Purpose: Considering several patients screened due to COVID-19 pandemic, computer-aided detection has strong potential in assisting clinical workflow efficiency and reducing the incidence of infections among radiologists and healthcare providers. Since many confirmed COVID-19 cases present radiological findings of pneumonia, radiologic examinations can be useful for fast detection. Therefore, chest radiography can be used to fast screen COVID-19 during the patient triage, thereby determining the priority of patient's care to help saturated medical facilities in a pandemic situation. Methods: In this paper, we propose a new learning scheme called self-supervised transfer learning for detecting COVID-19 from chest X-ray (CXR) images. We compared six self-supervised learning (SSL) methods (Cross, BYOL, SimSiam, SimCLR, PIRL-jigsaw, and PIRL-rotation) with the proposed method. Additionally, we compared six pretrained DCNNs (ResNet18, ResNet50, ResNet101, CheXNet, DenseNet201, and InceptionV3) with the proposed method. We provide quantitative evaluation on the largest open COVID-19 CXR dataset and qualitative results for visual inspection. Results: Our method achieved a harmonic mean (HM) score of 0.985, AUC of 0.999, and four-class accuracy of 0.953. We also used the visualization technique Grad-CAM++ to generate visual explanations of different classes of CXR images with the proposed method to increase the interpretability. Conclusions: Our method shows that the knowledge learned from natural images using transfer learning is beneficial for SSL of the CXR images and boosts the performance of representation learning for COVID-19 detection. Our method promises to reduce the incidence of infections among radiologists and healthcare providers.
translated by 谷歌翻译
In this paper, we propose an end-to-end framework that jointly learns keypoint detection, descriptor representation and cross-frame matching for the task of image-based 3D localization. Prior art has tackled each of these components individually, purportedly aiming to alleviate difficulties in effectively train a holistic network. We design a self-supervised image warping correspondence loss for both feature detection and matching, a weakly-supervised epipolar constraints loss on relative camera pose learning, and a directional matching scheme that detects key-point features in a source image and performs coarse-to-fine correspondence search on the target image. We leverage this framework to enforce cycle consistency in our matching module. In addition, we propose a new loss to robustly handle both definite inlier/outlier matches and less-certain matches. The integration of these learning mechanisms enables end-to-end training of a single network performing all three localization components. Bench-marking our approach on public data-sets, exemplifies how such an end-to-end framework is able to yield more accurate localization that out-performs both traditional methods as well as state-of-the-art weakly supervised methods.
translated by 谷歌翻译
Devising procedures for auditing generative model privacy-utility tradeoff is an important yet unresolved problem in practice. Existing works concentrates on investigating the privacy constraint side effect in terms of utility degradation of the train on synthetic, test on real paradigm of synthetic data training. We push such understanding on privacy-utility tradeoff to next level by observing the privacy deregulation side effect on synthetic training data utility. Surprisingly, we discover the Utility Recovery Incapability of DP-CTGAN and PATE-CTGAN under privacy deregulation, raising concerns on their practical applications. The main message is Privacy Deregulation does NOT always imply Utility Recovery.
translated by 谷歌翻译
As an efficient way to integrate multiple distributed energy resources and the user side, a microgrid is mainly faced with the problems of small-scale volatility, uncertainty, intermittency and demand-side uncertainty of DERs. The traditional microgrid has a single form and cannot meet the flexible energy dispatch between the complex demand side and the microgrid. In response to this problem, the overall environment of wind power, thermostatically controlled loads, energy storage systems, price-responsive loads and the main grid is proposed. Secondly, the centralized control of the microgrid operation is convenient for the control of the reactive power and voltage of the distributed power supply and the adjustment of the grid frequency. However, there is a problem in that the flexible loads aggregate and generate peaks during the electricity price valley. The existing research takes into account the power constraints of the microgrid and fails to ensure a sufficient supply of electric energy for a single flexible load. This paper considers the response priority of each unit component of TCLs and ESSs on the basis of the overall environment operation of the microgrid so as to ensure the power supply of the flexible load of the microgrid and save the power input cost to the greatest extent. Finally, the simulation optimization of the environment can be expressed as a Markov decision process process. It combines two stages of offline and online operations in the training process. The addition of multiple threads with the lack of historical data learning leads to low learning efficiency. The asynchronous advantage actor-critic with the experience replay pool memory library is added to solve the data correlation and nonstatic distribution problems during training.
translated by 谷歌翻译
Three-phase PWM voltage-source rectifier (VSR) systems have been widely used in various energy conversion systems, where current sensors are the key component for state monitoring and system control. The current sensor faults may bring hidden danger or damage to the whole system; therefore, this paper proposed a random forest (RF) and current fault texture feature-based method for current sensor fault diagnosis in three-phase PWM VSR systems. First, the three-phase alternating currents (ACs) of the three-phase PWM VSR are collected to extract the current fault texture features, and no additional hardware sensors are needed to avoid causing additional unstable factors. Then, the current fault texture features are adopted to train the random forest current sensor fault detection and diagnosis (CSFDD) classifier, which is a data-driven CSFDD classifier. Finally, the effectiveness of the proposed method is verified by simulation experiments. The result shows that the current sensor faults can be detected and located successfully and that it can effectively provide fault locations for maintenance personnel to keep the stable operation of the whole system.
translated by 谷歌翻译
High order structures (cavities and cliques) of the gene network of influenza A virus reveal tight associations among viruses during evolution and are key signals that indicate viral cross-species infection and cause pandemics. As indicators for sensing the dynamic changes of viral genes, these higher order structures have been the focus of attention in the field of virology. However, the size of the viral gene network is usually huge, and searching these structures in the networks introduces unacceptable delay. To mitigate this issue, in this paper, we propose a simple-yet-effective model named HyperSearch based on deep learning to search cavities in a computable complex network for influenza virus genetics. Extensive experiments conducted on a public influenza virus dataset demonstrate the effectiveness of HyperSearch over other advanced deep-learning methods without any elaborated model crafting. Moreover, HyperSearch can finish the search works in minutes while 0-1 programming takes days. Since the proposed method is simple and easy to be transferred to other complex networks, HyperSearch has the potential to facilitate the monitoring of dynamic changes in viral genes and help humans keep up with the pace of virus mutations.
translated by 谷歌翻译